Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513027

RESUMO

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Assuntos
Aciltransferases , Proteínas de Bactérias , Evolução Molecular Direcionada , Policetídeo Sintases , Policetídeos , Proteínas Recombinantes de Fusão , Aciltransferases/genética , Aciltransferases/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Serratia , Motivos de Aminoácidos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
2.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543033

RESUMO

Glycosylated polyene macrolides are important antifungal agents that are produced by many actinomycete species. Development of new polyenes may deliver improved antibiotics. Here, Streptomyces nodosus was genetically re-programmed to synthesise pentaene analogues of the heptaene amphotericin B. These pentaenes are of interest as surrogate substrates for enzymes catalysing unusual, late-stage biosynthetic modifications. The previous deletion of amphotericin polyketide synthase modules 5 and 6 generated S. nodosus M57, which produces an inactive pentaene. Here, the chain-terminating thioesterase was fused to module 16 to generate strain M57-16TE, in which cycles 5, 6, 17 and 18 are eliminated from the biosynthetic pathway. Another variant of M57 was obtained by replacing modules 15, 16 and 17 with a single 15-17 hybrid module. This gave strain M57-1517, in which cycles 5, 6, 15 and 16 are deleted. M57-16TE and M57-1517 gave reduced pentaene yields. Only M57-1517 delivered its predicted full-length pentaene macrolactone in low amounts. For both mutants, the major pentaenes were intermediates released from modules 10, 11 and 12. Longer pentaene chains were unstable. The novel pentaenes were not glycosylated and were not active against Candida albicans. However, random mutagenesis and screening may yet deliver new antifungal producers from the M57-16TE and M57-1517 strains.


Assuntos
Anfotericina B , Policetídeo Sintases , Anfotericina B/farmacologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Macrolídeos/metabolismo , Antibacterianos
3.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397022

RESUMO

Piperazic acid is a cyclic nonproteinogenic amino acid that contains a hydrazine N-N bond formed by a piperazate synthase (KtzT-like). This amino acid, found in bioactive natural products synthesized by non-ribosomal peptide synthetases (NRPSs), confers conformational constraint to peptides, an important feature for their biological activities. Genome mining of Streptomyces strains has been revealed as a strategy to identify biosynthetic gene clusters (BGCs) for potentially active compounds. Moreover, the isolation of new strains from underexplored habitats or associated with other organisms has allowed to uncover new BGCs for unknown compounds. The in-house "Carlos Sialer (CS)" strain collection consists of seventy-one Streptomyces strains isolated from the cuticle of leaf-cutting ants of the tribe Attini. Genomes from twelve of these strains have been sequenced and mined using bioinformatics tools, highlighting their potential to encode secondary metabolites. In this work, we have screened in silico those genomes, using KtzT as a hook to identify BGCs encoding piperazic acid-containing compounds. This resulted in uncovering the new BGC dpn in Streptomyces sp. CS113, which encodes the biosynthesis of the hybrid polyketide-depsipeptide diperamycin. Analysis of the diperamycin polyketide synthase (PKS) and NRPS reveals their functional similarity to those from the aurantimycin A biosynthetic pathway. Experimental proof linking the dpn BGC to its encoded compound was achieved by determining the growth conditions for the expression of the cluster and by inactivating the NRPS encoding gene dpnS2 and the piperazate synthase gene dpnZ. The identity of diperamycin was confirmed by High-Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) and by analysis of the domain composition of modules from the DpnP PKS and DpnS NRPS. The identification of the dpn BGC expands the number of BGCs that have been confirmed to encode the relatively scarcely represented BGCs for depsipeptides of the azinothricin family of compounds and will facilitate the generation of new-to-nature analogues by combinatorial biosynthesis.


Assuntos
Depsipeptídeos , Piridazinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Família Multigênica , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Aminoácidos/metabolismo
4.
J Biosci Bioeng ; 137(4): 239-244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307768

RESUMO

Type III polyketide synthases (type III PKSs) are single homodimeric enzymes that produce diverse products such as phloroglucinol, pyrones, resorcinols and chalcones which are biotechnologically important molecules. In an attempt to identify new type III PKS from extreme environments, the deep-sea sediment metagenome from Bay of Bengal was screened for type III PKS genes. BLASTX analyses of Nanopore sequence derived metagenome with the in-house created PKS database revealed a full length type III PKS from a 5 kb fragment. The annotated full length type III PKS, S9PKS showed 25-30 % sequence identity towards previously characterized enzymes. To functionally characterize the gene, it was synthesized, cloned into pET28a and pColdI vectors under T7 and csp promoters, respectively, and expressed in Escherichia coli Rosetta(DE3) pLysS. The optimized PKS (OptiPKS) was expressed as inclusion bodies under both promoters. The inclusion bodies were successfully solubilised using low concentration of urea, refolded and purified using Ni-NTA Agarose resin. The purified OptiPKS was tested for functionality using fatty acyl-CoA substrates at various temperatures. High performance liquid chromatography (HPLC) analyses revealed that OptiPKS produced tri and tetraketide pyrones using C4 to C10 acyl-CoA starter substrates. Further characterization and mutation of the enzyme would reveal its functional significance. Thus, the study could be a lead for the annotation and functional characterization of putative type III PKS from environmental metagenome data.


Assuntos
Metagenoma , Pironas , Metagenoma/genética , Aciltransferases/genética , Escherichia coli/genética , Policetídeo Sintases/genética
5.
Nat Commun ; 15(1): 236, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172109

RESUMO

Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery.


Assuntos
Policetídeos , Animais , Policetídeos/metabolismo , Ácidos Graxos , Metabolismo dos Lipídeos/genética , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo
6.
Chembiochem ; 25(1): e202300590, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37908177

RESUMO

Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.


Assuntos
Glicina , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Polienos
7.
Mol Microbiol ; 121(1): 18-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961029

RESUMO

Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi.


Assuntos
Aflatoxinas , Policetídeos , Metabolismo Secundário/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Genoma Fúngico , Policetídeos/metabolismo , Família Multigênica , Aflatoxinas/metabolismo , Genes Fúngicos
8.
Braz J Microbiol ; 55(1): 87-100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099978

RESUMO

Sanghuangporus sanghuang is a medicinal macrofungus with antioxidant and antitumor activities, and it is enriched with secondary metabolites such as polysaccharides, terpenes, polyphenols, and styrylpyrone compounds. To explore the putative core genes and gene clusters involved in sanghuang biosynthesis, we sequenced and assembled a 40.5-Mb genome of S. sanghuang (SH1 strain). Using antiSMASH, local BLAST, and NCBI comparison, 12 terpene synthases (TPSs), 1 non-ribosomal peptide synthase, and five polyketide synthases (PKSs) were identified in SH1. Combining the transcriptome analysis with liquid chromatography mass spectrometry-ion trap-time of flight analysis, we determined that ShPKS1, one phenylalanine aminolyase (ShPAL), and one P450 monooxygenase (ShC4H1) were associated with hispidin biosynthesis. Structural domain comparison indicated that ShPKS2 and ShPKS3 are involved in the biosynthesis of orsellinic acid and 2-hydroxy-6-methylbenzoic acid, respectively. Furthermore, comparative genomic analysis of SH1 with 14 other fungi from the Hymenochaetaceae family showed variation in the number of TPSs among different genomes, with Coniferiporia weirii exhibiting only 9 TPSs and Inonotus obliquus having 20. The number of TPSs also differed among the genomes of three strains of S. sanghuang, namely Kangneng (16), MS2 (9), and SH1 (12). The type and number of PKSs also varied among species and even strains, ranging from two PKSs in Pyrrhoderma noxium to five PKSs in S. sanghuang SH1. Among the three strains of S. sanghuang, both the structural domains and the number of PKSs in strains MS2 and SH1 were consistent, whereas strain Kangneng exhibited only four PKSs and lacked the PKS with the structural domain KS-AT-DH-KR-ACP. Additionally, Sanghuangporus species exhibited more similar PKSs to Inonotus, with higher gene similarity around five PKSs, while showing differences from those of other fungi in the same family, including Phellinus lamaoensis. This result supports the independent taxonomic significance of the genus Sanghuangporus to some extent.


Assuntos
Basidiomycota , Fungos , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Fungos/metabolismo , Antioxidantes , Genômica
9.
Nat Commun ; 14(1): 8065, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052796

RESUMO

Type II polyketide synthases (PKSs) normally synthesize polycyclic aromatic compounds in nature, and the potential to elaborate further diverse skeletons was recently revealed by the discovery of a polyene subgroup. Here, we show a type II PKS machinery for the biosynthesis of a five-membered nonaromatic skeleton contained in the nonproteinogenic amino acid cispentacin and the plant toxin coronatine. We successfully produce cispentacin in a heterologous host and reconstruct its biosynthesis using seven recombinant proteins in vitro. Biochemical analyses of each protein reveal the unique enzymatic reactions, indicating that a heterodimer of type II PKS-like enzymes (AmcF-AmcG) catalyzes a single C2 elongation as well as a subsequent cyclization on the acyl carrier protein (AmcB) to form a key intermediate with a five-membered ring. The subsequent reactions, which are catalyzed by a collection of type II PKS-like enzymes, are also peculiar. This work further expands the definition of type II PKS and illuminates an unexplored genetic resource for natural products.


Assuntos
Aciltransferases , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Aciltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Ciclização
10.
PLoS One ; 18(11): e0294843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011171

RESUMO

Biological control agents (BCAs), beneficial organisms that reduce the incidence or severity of plant disease, have been expected to be alternatives to replace chemical pesticides worldwide. To date, BCAs have been screened by culture-dependent methods from various environments. However, previously unknown BCA candidates may be buried and overlooked because this approach preferentially selects only easy-to-culture microbial lineages. To overcome this limitation, as a small-scale test case, we attempted to explore novel BCA candidates by employing the shotgun metagenomic information of the activated sludge (AS) microbiome, which is thought to contain unutilized biological resources. We first performed genome-resolved metagenomics for AS taken from a municipal sewage treatment plant and obtained 97 nonribosomal peptide synthetase (NRPS)/polyketide synthase (PKS)-related gene sequences from 43 metagenomic assembled bins, most of which were assigned to the phyla Proteobacteria and Myxococcota. Furthermore, these NRPS/PKS-related genes are predicted to be novel because they were genetically dissimilar to known NRPS/PKS gene clusters. Of these, the condensation domain of the syringomycin-related NRPS gene cluster was detected in Rhodoferax- and Rhodocyclaceae-related bins, and its homolog was found in previously reported AS metagenomes as well as the genomes of three strains available from the microbial culture collections, implying their potential BCA ability. Then, we tested the antimicrobial activity of these strains against phytopathogenic fungi to investigate the potential ability of BCA by in vitro cultivation and successfully confirmed the actual antifungal activity of three strains harboring a possibly novel NRPS gene cluster. Our findings provide a possible strategy for discovering novel BCAs buried in the environment using genome-resolved metagenomics.


Assuntos
Metagenoma , Esgotos , Agentes de Controle Biológico , Policetídeo Sintases/genética , Peptídeo Sintases/genética
11.
Nat Commun ; 14(1): 7284, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949901

RESUMO

The surface coatings of cereal plants are dominated by waxy ß-diketones crucial for drought resistance and, therefore, grain yield. Here, barley (Hordeum vulgare) wax analyses reveal ß-diketone and associated 2-alkanol ester profiles suggesting a common C16 3-ketoacid precursor. Isotope analysis further shows that the major (C31) diketone is synthesized from two plastidial C16 acyl units. Previous studies identified a gene cluster encoding enzymes responsible for ß-diketone formation in barley, but left their biochemical functions unknown. Various assays now characterize one of these enzymes as a thioesterase producing long-chain (mainly C16) 3-ketoacids, and another one as a polyketide synthase (PKS) condensing the 3-ketoacids with long-chain (mainly C16) acyl-CoAs into ß-diketones. The two enzymes are localized to the plastids and Endoplasmic Reticulum (ER), respectively, implying substrate transfer between these two sub-cellular compartments. Overall, our findings define a two-step pathway involving an unprecedented PKS reaction leading directly to the ß-diketone products.


Assuntos
Hordeum , Policetídeo Sintases , Policetídeo Sintases/genética , Hordeum/genética , Hordeum/metabolismo , Cetonas/metabolismo
12.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999409

RESUMO

The hadal biosphere is the most mysterious ecosystem on the planet, located in a unique and extreme environment on Earth. To adapt to extreme environmental conditions, hadal microorganisms evolve special strategies and metabolisms to survive and reproduce. However, the secondary metabolites of the hadal microorganisms are poorly understood. In this study, we focused on the isolation and characterization of hadal fungi, screening the potential strains with bioactive natural products. The isolates obtained were detected further for the polyketide synthase (PKS) genes. Two isolates of Alternaria alternata were picked up as the representatives, which had the potential to synthesize active natural products. The epigenetic modifiers were used for the two A. alternata isolates to stimulate functional gene expression in hadal fungi under laboratory conditions. The results showed that the chemical epigenetic modifier, 5-Azacytidine (5-Aza), affected the phenotype, PKS gene expression, production of secondary metabolites, and antimicrobial activity of the hadal fungus A. alternata. The influence of epigenetic modification on natural products was strongest when the concentration of 5-Aza was 50 µM. Furthermore, the modification of epigenetic agents on hadal fungi under high hydrostatic pressure (HHP) of 40 MPa displayed significant effects on PKS gene expression, and also activated the production of new compounds. Our study demonstrates the high biosynthetic potential of cultivable hadal fungi, but also provides evidence for the utility of chemical epigenetic modifiers on active natural products from hadal fungi, providing new ideas for the development and exploitation of microbial resources in extreme environments.


Assuntos
Produtos Biológicos , Ecossistema , Policetídeo Sintases/genética , Pressão Hidrostática , Epigênese Genética
13.
Eur J Med Chem ; 262: 115890, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37907023

RESUMO

Trans-AT polyketides represent a class of natural compounds utilizing independent acyltransferase during their biosynthesis. They are well known for their diverse chemical structures and potent bioactivities. Trans-AT polyketides are synthesized through biosynthetic gene clusters predominantly composed of polyketide synthases (PKS), but often found in hybrid with non-ribosomal peptide synthetases (NRPS). This genetic hybridization results in the incorporation of amino acid residues into polyketide structures, significantly enhancing their structural diversity. Numerous amino acid-containing trans-AT polyketides have been identified, drawing significant attention to the mechanisms underlying amino acid incorporation and their impact on the biological activity of polyketides. Here, we discussed their origins, structures, biological activities, and the specific roles of amino acids in modulating both the bioactivity and biosynthesis of 38 trans-AT polyketides containing amino acids for the first time. This comprehensive analysis will serve as a crucial reference for the exploration of novel compounds and the improvement of structures and activities.


Assuntos
Policetídeos , Policetídeos/farmacologia , Policetídeos/química , Aminoácidos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Peptídeo Sintases/metabolismo
14.
Microbiologyopen ; 12(5): e1386, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877655

RESUMO

Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus), which together generate a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here, we provide a comparative view of the biosynthetic gene clusters of three lichen mycobionts derived from Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. In addition, we present a high-quality PacBio metagenome of Parmelia sulcata, from which we extracted the mycobiont bin containing 214 biosynthetic gene clusters. Most biosynthetic gene clusters in these genomes were associated with T1PKSs, followed by NRPSs and terpenes. This study focused on biosynthetic gene clusters related to polyketide synthesis. Based on ketosynthase homology, we identified nine highly syntenic clusters present in all three species. Among the four clusters belonging to nonreducing PKSs, two are putatively linked to lichen substances derived from orsellinic acid (orcinol depsides and depsidones, e.g., lecanoric acid, physodic acid, lobaric acid), one to compounds derived from methylated forms of orsellinic acid (beta orcinol depsides, e.g., atranorin), and one to melanins. Five clusters with orthologs in all three species are linked to reducing PKSs. Our study contributes to sorting and dereplicating the vast PKS diversity found in lichenized fungi. High-quality sequences of biosynthetic gene clusters of these three common species provide a foundation for further exploration into biotechnological applications and the molecular evolution of lichen substances.


Assuntos
Líquens , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Depsídeos/metabolismo , Sintenia , Líquens/genética , Líquens/microbiologia , Fungos/genética , Família Multigênica , Filogenia
15.
ACS Chem Biol ; 18(10): 2300-2308, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37773034

RESUMO

Didemnin B is a marine-derived depsipeptide with potent antiviral and anticancer activities. A prodrug activation mechanism was previously proposed for the biosynthesis of didemnin B by the nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) assembly line, but the enzyme involved in the maturation process remained unknown. Herein, we demonstrated that DidA, a dimodular NRPS predicted with unrelated activity to didemnin B structure assembly, was indispensable to produce didemnin B, confirming the prodrug mechanism in didemnin B biosynthesis. We further identified an Abi family transmembrane protease, DidK, that functioned as an esterase in the maturation step of didemnin B by in vivo gene knockout and heterologous expression. DidK is structurally distinct from other known hydrolytic enzymes involved in the maturation of bacterial nonribosomal peptides and is the first Abi family protein known to participate in NRPS/PKS-derived natural product production. Further bioinformatic analysis revealed more than 20 DidK homologues encoded in bacterial NRPS/PKS BGCs, suggesting that the involvement of Abi family proteins in natural product biosynthesis might not be rare. These results not only clarify the priming and maturation steps of didemnin B biosynthesis but also expand the function scope of Abi family proteins.


Assuntos
Produtos Biológicos , Depsipeptídeos , Pró-Fármacos , Depsipeptídeos/genética , Policetídeo Sintases/genética , Peptídeo Sintases/metabolismo , Bactérias/metabolismo , Família Multigênica
16.
Proc Natl Acad Sci U S A ; 120(38): e2305575120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695909

RESUMO

Animal cytoplasmic fatty acid synthase (FAS) represents a unique family of enzymes that are classically thought to be most closely related to fungal polyketide synthase (PKS). Recently, a widespread family of animal lipid metabolic enzymes has been described that bridges the gap between these two ubiquitous and important enzyme classes: the animal FAS-like PKSs (AFPKs). Although very similar in sequence to FAS enzymes that produce saturated lipids widely found in animals, AFPKs instead produce structurally diverse compounds that resemble bioactive polyketides. Little is known about the factors that bridge lipid and polyketide synthesis in the animals. Here, we describe the function of EcPKS2 from Elysia chlorotica, which synthesizes a complex polypropionate natural product found in this mollusc. EcPKS2 starter unit promiscuity potentially explains the high diversity of polyketides found in and among molluscan species. Biochemical comparison of EcPKS2 with the previously described EcPKS1 reveals molecular principles governing substrate selectivity that should apply to related enzymes encoded within the genomes of photosynthetic gastropods. Hybridization experiments combining EcPKS1 and EcPKS2 demonstrate the interactions between the ketoreductase and ketosynthase domains in governing the product outcomes. Overall, these findings enable an understanding of the molecular principles of structural diversity underlying the many molluscan polyketides likely produced by the diverse AFPK enzyme family.


Assuntos
Produtos Biológicos , Gastrópodes , Policetídeos , Animais , Policetídeo Sintases/genética , Ácido Graxo Sintases , Lipídeos
17.
World J Microbiol Biotechnol ; 39(10): 278, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37582899

RESUMO

Milbemycins (MILs), a group of 16-membered insecticidal macrocylic lactones, are widely used as the biological pesticide and the precursors of semi-synthetic veterinary drugs. Polyketide synthases (PKSs), which require phosphopantetheinyl transferases (PPTases) to activate their ACP domains from apo forms to holo forms, catalyze the backbone biosynthesis of MILs. Here we found there was a complex phosphopantetheinylation network mediated by five putative PPTases in Streptomyces bingchenggensis. Repression mutants of PpA27 and PpA62 via CRISPRi both produced significantly lower yields of MILs than that of the control strain. Repression mutant of PpA68 led to abolishment of the pigment production. MILs production was significantly enhanced by PpA27 overexpression, while not by the overexpression of other PPTases. PpA27 was thus proved a dedicated post-translational enzyme to activate PKSs involved in the MILs biosynthesis. MILs titer was further enhanced by co-overexpression of PpA27 and MilR, the pathway­specific transcriptional activator of MIL biosynthetic gene cluster. When PpA27 and MilR were co-overexpressed in the industrial S. bingchenggensis HMB, MILs production was increased by 40.5%. These results indicated that tuning the antibiotic biosynthetic pathway by co-engineering transcriptional regulation network and post-translational phosphopantetheinylation network is an effective strategy for antibiotic production improvement.


Assuntos
Antibacterianos , Macrolídeos , Macrolídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/genética
18.
Open Biol ; 13(8): 230096, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37528731

RESUMO

Assembly line polyketide synthases (PKSs) are a large family of multifunctional enzymes responsible for synthesizing many medicinally relevant natural products with remarkable structural variety and biological activity. The decrease in cost of genomic sequencing paired with development of computational tools like antiSMASH presents an opportunity to survey the vast diversity of assembly line PKS. Mining the genomic data in the National Center for Biotechnology Information database, our updated catalogue (https://orphanpkscatalog2022.stanford.edu/catalog) presented in this article revealed 8799 non-redundant assembly line polyketide synthase clusters across 4083 species, representing a threefold increase over the past 4 years. Additionally, 95% of the clusters are 'orphan clusters' for which natural products are neither chemically nor biologically characterized. Our analysis indicates that the diversity of assembly line PKSs remains vastly under-explored and also highlights the promise of a genomics-driven approach to natural product discovery.


Assuntos
Produtos Biológicos , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Sequência de Bases , Genômica
19.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460166

RESUMO

Historically, bacteria of the phylum, Actinobacteria have been a very prominent source of bioactive compounds for drug discovery. Among the actinobacterial genera, Micrococcus has not generally been prioritized in the search for novel drugs. The bacteria in this genus are known to have very small genomes (generally < 3 Mb). Actinobacteria with small genomes seldom contain the well-characterized biosynthetic gene clusters such as those encoding polyketide synthases and nonribosomal peptide synthetases that current genome mining algorithms are optimized to detect. Nevertheless, there are many reports of substantial pharmaceutically relevant bioactivity of Micrococcus extracts. On the other hand, there are remarkably few descriptions of fully characterized and structurally elucidated bioactive compounds from Micrococcus spp. This review provides a comprehensive summary of the bioactivity of Micrococcus spp. that encompasses antibacterial, antifungal, cytotoxic, antioxidant, and anti-inflammatory activities. This review uncovers the considerable biosynthetic potential of this genus and highlights the need for a re-examination of these bioactive strains, with a particular emphasis on marine isolates, because of their potent bioactivity and high potential for encoding unique molecular scaffolds.


Assuntos
Actinobacteria , Micrococcus , Actinobacteria/genética , Bactérias , Antibacterianos/farmacologia , Policetídeo Sintases/genética , Descoberta de Drogas
20.
ACS Synth Biol ; 12(8): 2432-2443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523786

RESUMO

Bacterial biosynthetic assembly lines, such as nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), play a crucial role in the synthesis of natural products that have significant therapeutic potential. The ability to engineer these biosynthetic assembly lines offers opportunities to produce artificial nonribosomal peptides, polyketides, and their hybrids with improved properties. In this study, we introduced a synthetic NRPS variant, termed type S NRPS, which simplifies the engineering process and enables biocombinatorial approaches for generating nonribosomal peptide libraries in a parallelized high-throughput manner. However, initial generations of type S NRPSs exhibited a bottleneck that led to significantly reduced production yields. To address this challenge, we employed two optimization strategies. First, we truncated SYNZIPs from the N- and/or C-terminus of the NRPS. SYNZIPs comprise a large set of well-characterized synthetic protein interaction reagents. Second, we incorporated a structurally flexible glycine-serine linker between the NRPS protein and the attached SYNZIP, aiming to improve dynamic domain-domain interactions. Through an iterative optimization process, we achieved remarkable improvements in production yields, with titer increases of up to 55-fold compared to the nonoptimized counterparts. These optimizations successfully restored production levels of type S NRPSs to those observed in wild-type NRPSs and even surpassed them. Overall, our findings demonstrate the potential of engineering bacterial biosynthetic assembly lines for the production of artificial nonribosomal peptides. In addition, optimizing the SYNZIP toolbox can have valuable implications for diverse applications in synthetic biology, such as metabolic engineering, cell signaling studies, or engineering of other multienzyme complexes, such as PKSs.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/genética , Peptídeo Sintases/genética , Peptídeo Sintases/química , Peptídeos/metabolismo , Policetídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...